NEET 2023 SOLUTION CHEMISTRY

TSPH

JEE • NEET • MHT－CET

The Science Private＇s Hub

XI－XII SCIENCE
JEE（Mains \＆Adv．）｜NEET｜MHT－CET

F6

NEET 2023

 Chemistry
Section - A (Compulsory)

51. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R:
Assertion A : Metallic sodium dissolves in liquid ammonia giving a deep blue solution, which is paramagnetic.
Reasons \mathbf{R} : The deep blue solution is due to the formation of amide.
In the light of the above statements, choose the correct answer from the options given below :
(1) Both A and R are true but R is NOT the correct explanation of A.
(2) A is true but R is false.
(3) A is false but R is true.
(4) Both A and R are true and R is the correct explanation of A .
Sol:
$\mathrm{Na}_{(\mathrm{s})}+\mathrm{NH}_{3(\mathrm{l})} \rightarrow\left[\mathrm{Na}\left(\mathrm{NH}_{3}\right)_{\mathrm{x}}\right]^{+}+$

$$
\left[\mathrm{e}\left(\mathrm{NH}_{3}\right)_{\mathrm{y}}\right]^{-}
$$

Ammoniated e^{-},[Blue colour,
Paramagnetic, Reducing nature]
$\therefore \quad \mathrm{A}$ is correct but R is false
52. The conductivity of centimolar solution of KCl at $25^{\circ} \mathrm{C}$ is $0.0210 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ and the resistance of the cell containing the solution at $25^{\circ} \mathrm{C}$ is $\mathbf{6 0} \mathbf{~ o h m}$. The value of cell constant is
(1) $3.28 \mathrm{~cm}^{-1}$
(2) $1.26 \mathrm{~cm}^{-1}$
(3) $3.34 \mathrm{~cm}^{-1}$
(4) $1.34 \mathrm{~cm}^{-1}$

Sol:
$\mathrm{K}=0.021 \Omega^{-1} \mathrm{~cm}^{-1}$
$R=60 \Omega$
$K=\frac{b}{R}$
$0.021=\frac{\mathrm{b}}{60}$
$\mathrm{b}=1.26 \mathrm{~cm}^{-1}$
53. For a certain reaction, the rate $=$ $k[A]^{2}[B]$, when the initial concentration of A is tripled keeping concentration of B constant, the initial rate would
(1) increase by a factor of six.
(2) increase by a factor of nine.
(3) increase by a factor of three.
(4) decrease by a factor of nine.

Sol:
Rate $=\mathrm{K}[\mathrm{A}]^{2}[\mathrm{~B}]$
[B] is kept constant
[A] is TRIPLED
$\therefore \quad$ Rate will become Nine time
$\frac{(\text { Rate })^{\prime}}{(\text { Rate })}=\frac{K(3 A)^{2}(B)}{K(A)^{2}(B)}$
Rate' $=9$ (Rate)
54. Identify product (A) in the following reaction:
(1)

$$
\xrightarrow[\text { conc. } \mathrm{HCl}]{\mathrm{Zn}-\mathrm{Hg}}(\mathrm{~A})+2 \mathrm{H}_{2} \mathrm{O}
$$

(2)

(3)

(4)

Sol:
It is Clemmenson's reduction, which

55. Which one is an example of heterogenous catalysis?
(1) Hydrolysis of sugar catalysed by H^{+} ions
(2) Decomposition of ozone in presence of nitrogen monoxide.
(3) Combination between dinitrogen and dihydrogen to form ammonia in the presence of finely divided iron.
(4) Oxidation of sulphur dioxide into sulphur trioxide in the presence of oxides of nitrogen.

Sol:

Haber's process is Heterogenous catalysis
$\underset{(\mathrm{g})}{\mathrm{N}_{2}}+\underset{(\mathrm{g})}{3 \mathrm{H}_{2}} \xrightarrow[(\mathrm{~g})]{\mathrm{Fe}(\mathrm{s})} \underset{(\mathrm{g}}{ } \underset{\mathrm{N}}{\mathrm{N}}$
Iron \rightarrow solid
$\mathrm{N}_{2} \& \mathrm{H}_{2} \rightarrow$ gas
56. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R :
Assertion A : Helium is used to dilute oxygen in diving apparatus.
Reasons R : Helium has high solubility in O_{2}
In the light of the above statements, choose the correct answer from the correct options given below :
(1) Both A and R are true and R is NOT the correct explanation of A .
(2) A is true but R is false.
(3) A is false but R is true.
(4) Both A and R are true and R is the correct explanation of A .

Sol:

From
(1) Helium gas uses
(2) Helium is used to dilute oxygen is correct but reason is its poor solubility in blood through He is soluble in oxygen is correct
$\therefore \quad \mathrm{A}$ is true but R is false
57. Amongst the following, the total number of species NOT having eight electrons around central atom in its outer most shell, is
$\mathrm{NH}_{3}, \mathrm{AlCl}_{3}, \mathrm{BeCl}_{2}, \mathrm{CCl}_{4}, \mathrm{PCl}_{5}$
(1) 2
(2) 4
(3) 1
(4) 3

Sol:
AlCl_{3} - One empty p-orbital
BeCl_{2} - Two empty p-orbital
PCl_{5} - Expanded octet
58. The correct order of energies of molecular orbitals of N_{2} molecule, is
(1) $\sigma 1 \mathrm{~s}<\sigma^{*} 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{*} 2 \mathrm{~s}<\sigma 2 \mathrm{p}_{\mathrm{z}}<$ $\left(\pi 2 p_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}\right)<\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma^{*}$ $2 \mathrm{p}_{\mathrm{z}}$
(2) $\sigma 1 \mathrm{~s}<\sigma^{*} 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{*} 2 \mathrm{~s}<\sigma 2 \mathrm{p}_{\mathrm{z}}<$ $\sigma^{*} 2 p_{z}<\left(\pi 2 p_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}\right)<\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}=\right.$ $\pi^{*} 2 p_{y}$)
(3) $\sigma 1 \mathrm{~s}<\sigma^{*} 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{*} 2 \mathrm{~s}<\left(\pi 2 \mathrm{p}_{\mathrm{x}}=\right.$ $\left.\pi 2 p_{y}\right)<\left(\pi^{*} 2 p_{x}=\pi^{*} 2 p_{y}\right)<\sigma 2 p_{z}<\sigma^{*}$ $2 \mathrm{p}_{z}$
(4) $\sigma 1 \mathrm{~s}<\sigma^{*} 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{*} 2 \mathrm{~s}<\left(\pi 2 \mathrm{p}_{\mathrm{x}}=\right.$ $\left.\pi 2 p_{\mathrm{y}}\right)<\sigma 2 \mathrm{p}_{\mathrm{z}}<\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma^{*}$ $2 \mathrm{p}_{z}$
Sol:
$2^{\text {nd }}$ shell MOT for N_{2}
$\pi=\pi<\sigma<(\pi=\pi)^{*}<\sigma$
59. Match List - I with List - II

	List I		List II
A.	Coke	I.	Carbon atoms are sp^{3} hybridised
B.	Diamond	II.	Used as a dry lubricant
C.	Fullerene	III.	Used as a reducing agent
D.	Graphite	IV.	Cage like molecules

Choose the correct answer from the options given below :
(1) A-IV, B-I, C-II, D-III
(2) A-III, B-I, C-IV, D-II
(3) A-III, B-IV, C-I, D-II
(4) A-II, B-IV, C-I, D-III

Sol:
Coke - Reducing Agent
Diamond - sp ${ }^{3}$
Fullerene- Cage
Graphite - Lubricant
60. The number of σ bonds, π bonds and lone pair of electrons in pyridine, respectively are:
(1) $12,3,0$
(2) $11,3,1$
(3) $12,2,1$
(4) $11,2,0$

Sol:

1- Lone pair
$3-\pi$ bonds
Consider C-H bond which counting σ is 11
61. The element expected to form largest ion to achieve the nearest noble gas configuration is :
(1) F
(2) N
(3) Na
(4) 0

Sol:
$\mathrm{N}^{-3}>\mathrm{O}^{-2}>\mathrm{F}^{-1}>\mathrm{Na}^{+1}$
62. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R :
Assertion A : A reaction can have zero activation energy.
Reasons R: The minimum extra amount of energy absorbed by reactant molecules so that their energy becomes equal to threshold value, is called activation energy.
In the light of the above statements, choose
the correct answer from the options given below :
(1) Both A and R are true and R is NOT the correct explanation of A .
(2) A is true but R is false:
(3) A is false but R is true.
(4) Both A and R are true and R is the correct explanation of A.

Sol:

(A) Reactions can not have zero activation
(R) Definition of activation

$\therefore \quad \mathrm{A}$ is false but R is true.
63. Consider the following reaction and identify the product (P).

3-Methylbutan-2-ol
(1)
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$

(2)
(3)

(4)

Sol:
The reaction involves carbocation, hence there will be hydride shift

64. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R :

Assertion A : In equation $\Delta_{\mathrm{r}} \mathrm{G}=-\mathrm{nFE}$ cell, value of $\Delta_{r} G$ depends on n.
Reasons R : Ecell is an intensive property and $\Delta_{\mathrm{r}} \mathrm{G}$ is an extensive property.
In the light of the above statements, choose the correct answer from the options given below:
(1) Both A and R are true and R is NOT the correct explanation of A.
(2) A is true but R is false.
(3) A is false but R is true.
(4) Both A and R are true and R is the correct explanation of A.

Sol:

$\Delta_{r} G$ is extensive property and $E_{\text {cell }}$ is intensive property
$\Delta_{\mathrm{r}} \mathrm{G}=-\mathrm{nEF}$
$\mathrm{F} \rightarrow$ Faraday constant
$\mathrm{E} \rightarrow$ Fix value for given cell
So, $\Delta \mathrm{G}$ changes if n changes
65. Which amongst the following options is correct graphical representation of Boyle's Law?

(1)

(2)
(3)

(4)

Sol:
Boyle's law given, $\mathrm{P} \propto \frac{1}{\mathrm{~V}}$

66. In Lassaigne's extract of an organic compound, both nitrogen and sulphur are present, which gives blood red colour with Fe^{3+} due to the formation of
(1) NaSCN
(2) $\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]^{4-}$
(3) $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$
(4) $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$

Sol:
Lassaigne's extract test
$\mathrm{Fe}^{+3} \xrightarrow{\mathrm{SCN}^{-}} \underset{\text { Blood red }}{[\mathrm{Fe}(\mathrm{SCN})]^{+2}}$
67. Identify the product in the following reaction:

(1)

(2)

(3)

(4)

Sol:

68. Select the correct statements from the following :
A. Atoms of all elements are composed of two fundamental particles.
B. The mass of the electron is $\mathbf{9 . 1 0 9 3 9}$ $\times 10^{-31} \mathrm{~kg}$.
C. All the isotopes of a given element show same chemical properties.
D. Protons and electrons are collectively known as inucleons.
E. Dalton's atomic theory, regarded the atom as an ultimate particle of matter.
Choose the correct answer from the options given below :
(1) C, D and E only
(2) A and E only
(3) B, C and E only
(4) A, B and C only

Sol:
A) There more other fundamental particles
B) Mass of e^{-}given correct
C) Isotopes have same chemical property
D) Neutron $+\mathrm{e}^{-}=$Nucleons, so incorrect
E) Dalton = Atom is ultimate It is correct
$\therefore \quad$ B, C, E are correct
69. A compound is formed by two elements A and B. The element B forms cubic close packed structure and atoms of A occupy $1 / 3$ of tetrahedral voids. If the formula of the compound is $A_{x} B_{y}$, then the value of $x+y$ is in option
(1) 4
(2) 3
(3) 2
(4) 5

Sol:
B \rightarrow form ccp $=4$
$\mathrm{A} \rightarrow \frac{1}{3}$ of T.V. $=\frac{1}{3} \times 8=\frac{8}{3}$
$\therefore \quad \mathrm{A}_{8 / 3} \mathrm{~B}_{4} \Rightarrow \mathrm{~A}_{8} \mathrm{~B}_{12} \Rightarrow \mathrm{~A}_{2} \mathrm{~B}_{3}$
$\therefore \quad \mathrm{x}+\mathrm{y}=2+3=5$
70. Given below are two statements:

Statement I : A unit formed by the attachment of a base to 1 ' position of sugar is known as nucleoside
Statement II : When nucleoside is linked to phosphorous acid at 5' -position of sugar moiety, we get nucleotide.

In the light of the above statements, choose the correct answer from the options given below :
(1) Both Statement I and Statement II are false.
(2) Statement I is true but Statement II is false.
(3) Statement I is false but Statement II is, true.
(4) Both Statement I and Statement II are true.
Sol:
Nucleoside = sugar + N.B. at position 1^{\prime}
Nucleotide $=[$ Sugar + N.B. $]+$ phosphate at 5'

Comes form phosphoric acid \& not from phosphorus acid
So, statement - I \Rightarrow correct
Statement-II \Rightarrow incorrect
71. Which amongst the following molecules on polymerization produces neoprene?
(1)

(2) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$

(4) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

Sol:
Neoprene - chloroprene rubber monomer
72. Taking stability as the factor, which one of the following represents correct relationship?
(1) $\mathrm{InI}_{3}>\operatorname{InI}$
(2) $\mathrm{AlCl}>\mathrm{AlCl}_{3}$
(3) $\mathrm{TlI}>\mathrm{TlI}_{3}$
(4) $\mathrm{TlCl}_{3}>\mathrm{TlCl}$

Sol:
In group $-13+$ I stability increases down the group $\&+3$ stability decreases due to incorrect pair effect

Tl- Thallium salts are therefore stable in +1 state
$\therefore \quad \mathrm{TlI}>\mathrm{TlI}_{3}$
73. Some tranquilizers are listed below. Which one from the following belongs to barbiturates?
(1) Meprobamate
(2) Valium
(3) Veronal
(4) Chlordiazepoxide

Sol:
Veronal is Barbituric acid derivates
74. Which of the following statements are NOT correct?
A. Hydrogen is used to reduce heavy metal oxides to metals.
B. Heavy water is used to study reaction mechanism.
C. Hydrogen is used to make saturated fats from oils.
D. The $\mathrm{H}-\mathrm{H}$ bond dissociation enthalpy is lowest as compared to a single bond between two atoms of any element.
E. Hydrogen reduces oxides of metals that are more active than iron.
Choose the most appropriate answer from the options given below :
(1) B, D only
(2) D, E only
(3) A, B, C only
(4) B, C, D, E only

Sol:
Uses of hydrogen \& heavy water
75. Intermolecular forces are forces of attraction and repulsion between interacting particles that will include :
A. dipole - dipole forces.
B. dipole - induced dipole forces.
C. hydrogen bonding.
D. covalent bonding.
E. dispersion forces.

Choose the most appropriate answer from the options given below :
(1) A, B, C, D are correct.
(2) A, B, C, E are correct.
(3) A, C, D, E are correct.
(4) B, C, D, E are correct.

Sol:
Covalent bond is NOT intermolecular forces of attraction
76. Amongst the given options which of the following molecules / ion acts as a Lewis acid?
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) BF_{3}
(3) OH^{-}
(4) NH_{3}

Sol:
Electron deficient species acts as lewis acid $\therefore \quad \mathrm{BF}_{3}$ acts as a lewis acid
77. The right option for the mass of CO_{2} produced by heating 20 g of 20% pure limestone is (Atomic mass of $\mathrm{Ca}=40$)
$\left[\mathrm{CaCO}_{3} \xrightarrow{1200 \mathrm{~K}} \mathrm{CaO}+\mathrm{CO}_{2}\right]$
(1) 1.76 g
(2) 2.64 g
(3) 1.32 g
(4) 1.12 g

Sol:
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
$\therefore \quad 100 \mathrm{~g} \mathrm{of}^{\mathrm{CaCO}_{3}}$ produces $44 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}$
$\therefore \quad 20 \mathrm{~g}$ of CaCO_{3} produces x of CO_{2}
$\mathrm{x}=\frac{20 \times 44}{100}=8.89 \mathrm{gm}$
But on 20\% pure lime stone is used
$\therefore \quad \frac{8.8 \times 20}{100}=\frac{17.6}{10}=1.76 \mathrm{gm}$

TSPH
78. The relation between $n_{m}, n_{m}=$ the number of permissible values of magnetic quantum number (m)) for a given value of azimuthal quantum number (I), is
(1) $\ell=2 n_{m}+1$
(2) $\mathrm{n}_{\mathrm{m}}=2 \ell^{2}+1$
(3) $\mathrm{n}_{\mathrm{m}}=\ell+2$
(4) $\ell=\frac{\mathrm{n}_{\mathrm{m}}-1}{2}$

Sol:

$$
\begin{array}{ll}
& \mathrm{n}_{\mathrm{m}}=2 \mathrm{l}+1 \\
2 \mathrm{l}=\mathrm{n}_{\mathrm{m}}-1 \\
& \mathrm{l}=\frac{\mathrm{n}_{\mathrm{m}}-1}{2}
\end{array}
$$

79. The stability of Cu^{2+} is more than Cu^{+} salts in aqueous solution due to -
(1) enthalpy of atomization.
(2) hydration energy.
(3) second ionisation enthalpy,
(4) first ionisation enthalpy.

Sol:
Cu^{+2} high hydration enthalpy as compound to Cu^{+1} and hence Cu^{+2} is more stable than Cu^{+}salt in aqueous salt
80. Which one of the following statements is correct?
(1) All enzymes that utilise ATP in phosphate transfer require Ca as the cofactor.
(2) The bone in human body is an inert and unchanging substance.
(3) Mg plays roles in neuromuscular function and interneuronal transmission.
(4) The daily requirement of Mg and Ca in the human body is estimated to be 0.2 -0.3 g .

Sol:

i) All enzymes that utlise ATP in phosphate transfer requires Mg as the co-factor
ii) The bone in human body degenates
iii) Ca plays role in neuromuscular function and interneuronal transmission.
81. Which of the following reactions will NOT give primary amine as the product?
(1) $\mathrm{CH}_{3} \mathrm{CN} \xrightarrow[\text { (ii) } \mathrm{H}_{3} 0^{+}]{\text {(i) } \mathrm{LiH}_{4}}$ Product
(2) $\mathrm{CH}_{3} \mathrm{NC} \xrightarrow[\text { (ii) } \mathrm{H}_{3} 0^{+}]{\text {(i) } \mathrm{HilH}_{4}}$ Product
(3) $\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{LiAlH}_{4}}$ Product
(4) $\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow{\mathrm{Br}_{2} / \mathrm{KOH}}$ Product

Sol:

82. The given compound

is an example of \qquad .
(1) aryl halide
(2) allylic halide
(3) vinylic halide
(4) benzylic halide

Sol:

Allylic halide

83. Complete the following reaction :

$\xrightarrow[\Delta]{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}[\mathrm{C}]$
[C] is \qquad
(1)

(2)

(3)

(4)

Sol:

84. Homoleptic complex from the following complexes is :
(1) Diamminechloridonitrito - N platinum (II)
(2) Pentaamminecarbonatocobalt (III) chloride
(3) Triamminetriaquachromium (III) chloride
(4) Potassium trioxalatoaluminate (III)

Sol:
i) $\left[\mathrm{PtCl}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)\right] \rightarrow$ Heteroleptic complex
ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CO}_{3}\right)\right] \mathrm{Cl} \rightarrow$ Heteroleptic complex
iii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)\right] \mathrm{Cl}_{3} \rightarrow$ Heteroleptic complex
iv) $\mathrm{K}_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \rightarrow$ Homoleptic complex
85. Weight (g) of two moles of the organic compound, which is obtained by heating sodium ethanoate with sodium hydroxide in presence of calcium oxide is :
(1) 32
(2) 30
(3) 18
(4) 16

Sol:

Section - B (Attempt ANY 10)
86. Consider the following reaction :

Identify products A and B.

(1)

(3)

(4)

Sol:

87. Which amongst the following will be most readily dehydrated under acidic conditions?
(1)

(2)

(3)

(4)

Sol:

In acidic condition carbocation is formed
$\therefore \quad$ (A) forms a stable carbocation as compared to other
$\because \quad$ there is a withdrawing group present in others
88. The equilibrium concentrations of the species in the reaction $A+B \rightleftharpoons C+D$ are $2,3,10$ and $6 \mathrm{~mol} \mathrm{~L}^{-1}$, respectively at $300 \mathrm{~K} . \Delta \mathrm{G}^{\circ}$ for the reaction is ($\mathrm{R}=2 \mathrm{cal} /$ mol K)
(1) -137.26 cal
(2) -1381.80 cal
(3) -13.73 cal
(4) 1372.60 cal

Sol:
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$
$=\frac{6 \times 10}{3 \times 2}$
$\mathrm{K}_{\mathrm{c}}=10$
$\Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}$
$=-2.303 \times 2 \times 300 \times \log (10)$
$=-2.303 \times 600=-1381.80 \mathrm{cal}$
89. Given below are two statements :

Statement I: The nutrient deficient water bodies lead to eutrophication.
Statement II : Eutrophication leads to decrease in the level of oxygen in the water bodies.
In the light of the above statements, choose the correct answer from the options given below :
(1) Both Statement I and Statement II are false.
(2) Statement I is correct but Statement II is false.
(3) Statement I is incorrect but State II is true.
(4) Both Statement I and Statement II are true.

Sol:

Statement I : The nutrient rich watar bodies lead to eutrophication
$\therefore \quad$ Statement I is incorrect \& statement II is correct
90. Which amongst the following options is the correct relation between change in enthalpy and change in internal energy?
(1) $\Delta H=\Delta U+\Delta n_{g} R T$
(2) $\Delta \mathrm{H}-\Delta \mathrm{U}=-\Delta \mathrm{nRT}$
(3) $\Delta H+\Delta U=\Delta n R$
(4) $\Delta H=\Delta U-\Delta n_{g} R T$

Sol:

First law of thermodynamics

$$
\begin{array}{ll}
& \Delta U=\Delta H+w \\
\therefore & \Delta H=\Delta U-w \\
& w=-\Delta n_{g} R T \\
\therefore & \Delta H=\Delta U-\left(-\Delta n_{g} R T\right) \\
\therefore & \Delta H=\Delta U+\Delta n_{g} R T
\end{array}
$$

91. Match List-I with List-II :

	Column (Oxoacids of Sulphur)	Column II (Bonds)	
A.	Peroxodisulphuric acid	I.	Two S-OH, Four S = 0, One S-O-S
B.	Sulphuric acid	II.	Two S-OH, One S = O
C.	Pyrosulphuric acid	III.	Two S-OH, Four S = 0,
D.	Sulphurous acid	IV.	Two S-OH, Two S = O

Choose the correct answer from the options given below :
(1) A-III, B-IV, C-I, D-II
(2) A-I, B-III, C-IV, D-II
(3) A-III, B-IV, C-II, D-I
(4) A-I, B-III, C-II, D-IV

Sol:

Peroxodisulphuric acid

$\mathrm{S}=0 \rightarrow 4$ bonds
$\mathrm{S}-\mathrm{OH} \rightarrow 2$ bonds
$\mathrm{S}-\mathrm{O}-\mathrm{O}-\mathrm{S} \rightarrow 1$ bond

Sulphuric acid

$\mathrm{S}=0 \rightarrow 2$ bonds
$\mathrm{S}-\mathrm{OH} \rightarrow 2$ bonds

Pyrosulphuric acid

$\mathrm{S}=\mathrm{O} \rightarrow 4$ bonds
$\mathrm{S}-\mathrm{OH} \rightarrow 2$ bonds
$\mathrm{S}-\mathrm{O}-\mathrm{S} \rightarrow 1$ bond

Sulphurous acid

$\mathrm{S}=0 \rightarrow 1$ bond
$\mathrm{S}-\mathrm{OH} \rightarrow 2$ bonds
92. Identify the major product obtained in the following reaction :

(1)
(2)

(3)

(4)

Sol:

Tollens test is given by aldehyde \& not by ketones

93. Pumice stone is an example of -
(1) gel
(2) solid sol
(3) foam
(4) sol

Sol:
Pumice stone is an example of solid sol
94. The reaction that does NOT take place in a blast furnace between 900 K to 1500 K temperature range during extraction of iron is :
(1) $\mathrm{FeO}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
(2) $\mathrm{C}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{CO}$
(3) $\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}$
(4) $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow 2 \mathrm{FeO}+\mathrm{CO}_{2}$

Sol:
At $900-1500 \mathrm{~K}$

$\mathrm{FeO}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
$\mathrm{C}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{CO}$
$\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}$
At $500-800 \mathrm{~K}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow 2 \mathrm{FeO}+\mathrm{CO}_{2}$
95. Which of the following statements are INCORRECT?
A. All the transition metals except scandium form MO oxides which are ionic.
B. The highest oxidation number corresponding to the group number in transition metal oxides is attained in $\mathrm{Sc}_{2} \mathrm{O}_{3}$ to $\mathrm{Mn}_{2} \mathrm{O}_{7}$.
C. Basic character increases from $\mathrm{V}_{2} \mathrm{O}_{3}$ to $\mathrm{V}_{2} \mathrm{O}_{4}$ to $\mathrm{V}_{2} \mathrm{O}_{5}$.
D. $\quad \mathrm{V}_{2} \mathrm{O}_{4}$ dissolves in acids to give salts VO_{4}^{3-} salts
E. CrO is basic but $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is amphoteric
Choose the correct answer from the options given below :
(1) B and D only
(2) C and D only
(3) B and C only
(4) A and E only

Sol:
Acidic character increases from $\mathrm{V}_{2} \mathrm{O}_{3}, \mathrm{~V}_{2} \mathrm{O}_{4}$, $\mathrm{V}_{2} \mathrm{O}_{5}$
$\mathrm{V}_{2} \mathrm{O}_{3} \rightarrow$ Slightly basic
$\mathrm{V}_{2} \mathrm{O}_{4} \rightarrow$ Amphoteric
$\mathrm{V}_{2} \mathrm{O}_{5} \rightarrow$ Acidic
As the oxidation state increases acidity increases
$\mathrm{V}_{2} \mathrm{O}_{5}$ dissolves in acid to give $\mathrm{VO}_{4}^{-3} \& \mathrm{VO}_{4}^{+}$
$\mathrm{V}_{2} \mathrm{O}_{4}$ dissolves in acid to give VO^{+2}
$\therefore \quad \mathrm{C} \& \mathrm{D}$ are incorrect statement
96. Consider
the compounds/species:
i.

ii.

iii.
 iv.
vi.

vii.

The number of compounds/species which obey Huckel's rule is \qquad .
(1) 6
(2) 2
(3) 5
(4) 4

Sol:
Huckel's rule
$(4 \mathrm{n}+2) \pi \mathrm{e}^{-}$
$\mathrm{n}=0,1,2,3,4, \ldots$.
(i) $4 \mathrm{n}+2=10$
$4 n=8$
$\mathrm{n}=2$
Aromatic
(ii) $4 \mathrm{n}+2=6$
$4 n=4$
$\mathrm{n}=1$
Aromatic
(iii) $4 \mathrm{n}+2=4$
$4 n=2$
Non aromatic
(iv) $4 \mathrm{n}+2=4$
$\mathrm{n}=\frac{1}{2}$
Non aromatic
(v) $4 \mathrm{n}+2=2$
$4 \mathrm{n}=0$
$\mathrm{n}=0$
Aromatic
(vi) $4 n+2=8$
$4 n=6$
$\mathrm{n}=\frac{3}{2}$
Non aromatic
(vii) $4 \mathrm{n}+2=14$
$4 n=12$
$\mathrm{n}=3$
Aromatic
97. What fraction of one edge centred octahedral void lies in one unit cell of fcc?
(1) $\frac{1}{3}$
(2) $\frac{1}{4}$
(3) $\frac{1}{12}$
(4) $\frac{1}{2}$

Sol:

Effective part of an atom
At body center $\rightarrow 1$
Face center $\rightarrow 1 / 2$
Edge center $\rightarrow 1 / 4$
Corner $\rightarrow 1 / 8$
$\therefore \quad$ formation of octahedral void $=1 / 4$
98. Which complex compound is most stable?
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)_{3}\right]$
(2) $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{NO}_{3}$
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Br}\right]\left(\mathrm{NO}_{3}\right)_{2}$

Sol:
Stability of complex depends on ability of ligands to form chelates
Polydentate lignands form chelates
$\therefore \quad\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{NO}_{3}$ is most stable
99. On balancing the given redox reaction,
$\mathrm{aCr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{bSO}_{3(\text { (qq) }}^{2-}+\mathrm{cH}_{\text {(aq) }}^{+} \rightarrow$
$2 \mathrm{aCr}_{(\mathrm{aq})}^{3+}+\mathrm{bSO}_{4(\mathrm{aq})}^{2-}+\frac{\mathrm{c}}{2} \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
the coefficients a, b and c are found to be, respectively -
(1) $3,8,1$
(2) $1,8,3$
(3) $8,1,3$
(4) $1,3,8$
100. Identify the final product [D] obtained in the following sequence of reactions.
$\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow[\text { (i) } \mathrm{H}_{3} \mathrm{H}^{+}]{\text {(i) } \mathrm{LAH}_{4}}[\mathrm{~A}] \xrightarrow[\Delta]{\mathrm{H}_{2} \mathrm{SO}_{4}}[\mathrm{~B}]$
$\xrightarrow{\mathrm{HBr}}[\mathrm{C}] \xrightarrow[\mathrm{Na} / \text { dry ether }]{ }[\mathrm{D}]$
(1)

(2) $\mathrm{C}_{4} \mathrm{H}_{10}$
(3) $\mathrm{HC} \equiv \mathrm{C}^{-} \mathrm{Na}^{+}$
(4)

Sol:

NEET RESULTS 2022

अद्भुत! असाधारण !!

अतुल्य !!!

NEET 2022

